Chương 1: Khảo Sát Và Vẽ Đồ Thị Của Hàm Số
Chương 2 Hàm số lũy thừa, Hàm số mũ và Hàm số Lôgarit
Chương 3: Nguyên Hàm – Tích Phân Và Ứng Dụng
Chương 4: Số phức
Chương 1: Khối Đa Diện
Chương 2: Mặt Nón, Mặt Trụ, Mặt Cầu
Chương 3 Phương pháp tọa độ trong không gian

Trắc nghiệm Ôn tập cuối năm – Hình học 12

toan 12
Trắc nghiệm Ôn tập cuối năm – Hình học 12

  • Câu 1:

    Tứ diện đều có bao nhiêu mặt phẳng đối xứng?

    • A. 4
    • B. 8
    • C. 6
    • D. 10
  • Câu 2:

    Cho hình chóp S.ABC có đáy là tam giác đều cạnh a, cạnh bên SA vuông góc với đáy và \(SA = a\sqrt 3 .\) Tính thể tích V khối chóp S.ABC?

    • A. \(V = \frac{{{a^3}}}{{12}}\)
    • B. \(V = \frac{{{a^3}}}{2}\)
    • C. \(V = \frac{{{a^3}}}{4}\)
    • D. \(V = \frac{{{a^3}}}{6}\)
  • Câu 3:

    Cho hình chóp S.ABC có đáy là tam giác đều cạnh a, cạnh bên SA vuông góc với đáy và thể tích của khối chóp đó bằng \(\frac{{{a^3}}}{4}.\) Tính độ dài cạnh bên SA.

    • A. \(SA = \frac{{a\sqrt 3 }}{2}.\)
    • B. \(SA = 2a\sqrt 3 .\)
    • C. \(SA = a\sqrt 3 .\)
    • D. \(SA = \frac{{a\sqrt 3 }}{3}.\)
  • Câu 4:

    Cho lăng trụ đứng ABC.A’B’C’ có tất cả các cạnh bằng a. Tính thể tích V của khối tứ diện ABA’C’.

    • A. \(V = \frac{{{a^3}\sqrt 3 }}{4}\)
    • B. \(V = \frac{{{a^3}\sqrt 3 }}{6}\)
    • C. \(V = \frac{{{a^3}}}{6}\)
    • D. \(V = \frac{{{a^3}\sqrt 3 }}{{12}}\)
  • Câu 5:

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành và có thể tích bằng 1. Trên cạnh SC lấy điểm E sao cho SE=2EC. Tính thể tích V của khối tứ diện SEBD.​

    • A. \(V=\frac{1}{6}\)
    • B. \(V=\frac{1}{12}\)
    • C. \(V=\frac{1}{3}\)
    • D. \(V=\frac{2}{3}\)
  • Câu 6:

    Một tấm bìa hình vuông, người ta cắt bỏ mỗi góc của tấm bìa một hình vuông cạnh 12cm rồi gấp lại thành một hình hộp chữ nhật không có nắp. Nếu dung tích của cái hộp đó là 4,8 lít thì độ dài cạnh của tấm bìa là bao nhiêu.

    • A. 42 cm
    • B. 36 cm
    • C. 44 cm
    • D. 38 cm
  • Câu 7:

    Cho hình chóp tứ giác S.ABCD có đáy ABCD là hình chữ nhật có \(AB = 3a,{\rm{ }}AC = 5a\) và cạnh bên SB vuông góc với mặt phẳng đáy. Biết thể tích khối chóp bằng \(6a^3\). Tính khoảng cách từ đỉnh B đến mặt phẳng (SAD).

    • A. \(\frac{{3a\sqrt 5 }}{5}\)
    • B. \(\frac{{3a\sqrt 2 }}{2}\)
    • C. \(\frac{{3a\sqrt {10} }}{{10}}\)
    • D. \(\frac{{a\sqrt 6 }}{6}\)
  • Câu 8:

    Cho hình trụ có hai đường tròn đáy lần lượt là (O); (O’). Biết thể tích khối nón có đỉnh là O và đáy là hình tròn (O’) là \(a^3\) tính thể tích V của khối trụ đã cho?

    • A. \(V = 2{a^3}\)
    • B. \(V = 4{a^3}\)
    • C. \(V = 6{a^3}\)
    • D. \(V = 3{a^3}\)
  • Câu 9:

    Cho mặt cầu có diện tích bằng \(\frac{{8\pi {a^2}}}{3}.\) Tìm bán kính R của mặt cầu.

    • A. \(R = \frac{{a\sqrt 6 }}{3}\)
    • B. \(R = \frac{{a\sqrt 3 }}{3}\)
    • C. \(R = \frac{{a\sqrt 6 }}{2}\)
    • D. \(R = \frac{{a\sqrt 2 }}{3}\)
  • Câu 10:

    Cho tam giác ABC đều cạnh a, đường cao AH. Tính thể tích V của khối nón sinh ra khi cho tam giác ABC quay xung quanh trục AH.

    • A. \(V = \frac{{\pi {a^3}\sqrt 6 }}{{12}}\)
    • B. \(V = \frac{{\pi {a^3}\sqrt 3 }}{{12}}\)
    • C. \(V = \frac{{\pi {a^3}\sqrt 2 }}{{24}}\)
    • D. \(V = \frac{{\pi {a^3}\sqrt 3 }}{{24}}\)
  • Câu 11:

    Gọi \(V_1\) là thể tích giữa khối lập phương và \(V_2\) là thể tích khối cầu ngoại tiếp khối lập phương đó. Tính tỉ số \(\frac{{{V_1}}}{{{V_2}}}.\)

    • A. \(\frac{{{V_1}}}{{{V_2}}} = \frac{{3\pi }}{{2\sqrt 3 }}.\)
    • B. \(\frac{{{V_1}}}{{{V_2}}} = \frac{{\pi \sqrt 2 }}{3}.\)
    • C. \(\frac{{{V_1}}}{{{V_2}}} = \frac{3}{{\pi \sqrt 2 }}.\)
    • D. \(\frac{{{V_1}}}{{{V_2}}} = \frac{{2\sqrt 3 }}{{3\pi }}.\)
  • Câu 12:

    Một hình trụ có bán kính đáy bằng \(2a\sqrt 2\), thiết diện qua trục là một hình chữ nhật ABCD với \(AD=2AB\). Tính diện tích xung quanh S của hình trụ.

    • A. \(S = 6\pi {a^2}\)
    • B. \(S = 24\pi {a^2}\)
    • C. \(S = \frac{4}{3}\pi {a^2}\)
    • D. \(S = 64\pi {a^2}\)
  • Câu 13:

    Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại A, \(BC=2a\) . SA vuông góc (ABC) và \(SA = 2a\sqrt 2\). Tính thể tích V của khối cầu ngoại tiếp hình chóp đã cho.

    • A. \(V = 4\pi {a^3}\sqrt 3\)
    • B. \(V = \frac{{2\pi {a^3}\sqrt 3 }}{3}\)
    • C. \(V=\frac{{4\pi {a^3}\sqrt 3 }}{3}\)
    • D. \(V={a^3}\sqrt 3\)
  • Câu 14:

    Trong không gian với hệ tọa độ Oxyz, cho tam giác ABC biết \(A(5;1;3),B(1;6;2),C(5;0;4).\) Tìm tọa độ trọng tâm G của tam giác ABC.

    • A. \(G\left( {\frac{{11}}{3};3;7} \right)\)
    • B. \(G\left( {\frac{{11}}{3}; – \frac{7}{3};3} \right)\)
    • C. \(G\left( {\frac{{11}}{3};\frac{7}{3};3} \right)\)
    • D. \(G\left( {\frac{{11}}{3};\frac{7}{2};3} \right)\)
  • Câu 15:

    Trong không gian với hệ tọa độ Oxyz cho \(A\left( {1;0;2} \right),B\left( {1;1;1} \right),C\left( {2;3;0} \right).\) Vectơ nào sau đây là vectơ pháp tuyến của mặt phẳng (ABC).

    • A. \(\overrightarrow {{n_1}} = (1;1;1)\)
    • B. \(\overrightarrow {{n_2}} = (1; – 1; – 1)\)
    • C. \(\overrightarrow {{n_3}} = ( – 1; – 1;1)\)
    • D. \(\overrightarrow {{n_4}} = (1; – 1;1)\)
  • Câu 16:

    Trong không gian với hệ trục tọa độ Oxyz, cho đường thẳng \(d:\left\{ \begin{array}{l} x = 1\\ y = 2 + 3t\,\,\,\,(t \in\mathbb{R} )\\ z = 5 – t \end{array} \right.\). Vectơ nào dưới đây là vectơ chỉ phương của d?

    • A.  \(\,\overrightarrow {{u_1}} = \left( {0;3; – 1} \right).\)
    • B. \(\,\overrightarrow {{u_2}} = \left( {1;3; – 1} \right).\)
    • C. \(\,\overrightarrow {{u_3}} = \left( {1; – 3; – 1} \right).\)
    • D. \(\,\overrightarrow {{u_4}} = \left( {1;2;5} \right).\)
  • Câu 17:

    Trong không gian với hệ Oxyz, cho hai điểm A(1;2;3) và B(3;2;1). Viết phương trình mặt phẳng trung trực của đoạn thẳng AB.

    • A. \(x + y – z – 2 = 0\)
    • B. \(y-z=0\)
    • C. \(z-x=0\)
    • D. \(x-y=0\)
  • Câu 18:

    rong không gian với hệ trục tọa độ Oxyz, viết phương trình của mặt cầu đi qua ba điểm \(A(2;0;1),B(1;0;0),C(1;1;1)\) và có tâm thuộc mặt phẳng \((P):x + y + z – 2 = 0.\)

    • A. \({(x – 1)^2} + {y^2} + {(z – 1)^2} = 1\)
    • B. \({(x – 1)^2} + {y^2} + {(z – 1)^2} = 4\)
    • C. \({(x – 3)^2} + {(y – 1)^2} + {(z + 2)^2} = 1\)
    • D. \({(x – 3)^2} + {(y – 1)^2} + {(z + 2)^2} = 4\)
  • Câu 19:

    Trong không gian với hệ tọa độ Oxyz cho đường thẳng \(d:\frac{{x – 1}}{2} = \frac{y}{1} = \frac{{z + 1}}{3}\) và \(\left( P \right):2x + y – z = 0.\) Viết phương trình mặt phẳng (Q) chứa đường thẳng d và vuông góc mặt phẳng (P).

    • A. \(2x – y – z = 0\)
    • B. \(2x – y + z = 0\)
    • C. \(x + 2y + z = 0\)
    • D. \(x – 2y – 1 = 0\)
  • Câu 20:

    Trong không gian với hệ trục tọa độ Oxyz, cho hai đường thẳng \({d_1},{d_2}\) có phương trình lần lượt là  \(\frac{x}{2} = \frac{{y – 1}}{{ – 1}} = \frac{{z + 2}}{1},\left\{ \begin{array}{l} x = – 1 + 2t\\ y = 1 + t\\ z = 3 \end{array} \right.(t \in\mathbb{R} ).\) Viết phương trình đường thẳng vuông góc với \((P) = 7x + y – 4z = 0\) và cắt cả hai đường thẳng \({d_1},{d_2}\).

    • A. \(\frac{x}{7} = \frac{{y – 1}}{1} = \frac{{z + 2}}{{ – 4}}\)
    • B. \(\frac{{x – 2}}{7} = \frac{y}{1} = \frac{{z + 1}}{{ – 4}}\)
    • C. \(\frac{{x + 1}}{7} = \frac{{y – 1}}{1} = \frac{{z – 3}}{{ – 4}}\)
    • D. \(\frac{{x + \frac{1}{2}}}{7} = \frac{{y – 1}}{1} = \frac{{z – \frac{1}{2}}}{{ – 4}}\)