Chương 1: Khảo Sát Và Vẽ Đồ Thị Của Hàm Số
Chương 2 Hàm số lũy thừa, Hàm số mũ và Hàm số Lôgarit
Chương 3: Nguyên Hàm – Tích Phân Và Ứng Dụng
Chương 4: Số phức
Chương 1: Khối Đa Diện
Chương 2: Mặt Nón, Mặt Trụ, Mặt Cầu
Chương 3 Phương pháp tọa độ trong không gian

Giải bài tập SGK Ôn tập cuối năm Giải tích 12 thuộc chương 4

toan 12
Giải bài tập SGK Ôn tập cuối năm Giải tích 12 thuộc chương 4

Bài 15. Giải các phương trình sau trên tập số phức

a) \((3 + 2i)z – (4 + 7i) = 2 – 5i\)

b) \((7 – 3i)z + (2 + 3i) = (5 – 4i)z\)

c) \(z^2 – 2z + 13 = 0\)

d) \(z^4 -z^2– 6 = 0\)

Trả lời:

a) \((3 + 2i)z – (4 + 7i) = 2 – 5i\)

\(\eqalign{
& \Leftrightarrow (3 + 2i)z = 6 + 2i \cr
& \Leftrightarrow z = {{6 + 2i} \over {3 + 2i}} = {{22} \over {13}} – {6 \over {13}}i \cr} \)

b) \((7 – 3i)z + (2 + 3i) = (5 – 4i)z\)

\(\eqalign{
& \Leftrightarrow (7 – 3i – 5 + 4i)z = – 2 – 3i \cr
& \Leftrightarrow z = {{ – 2 – 3i} \over {2 + i}} = {{ – 7} \over 5} – {4 \over 5}i \cr} \)

c) \(z^2– 2z + 13 = 0\)

\(⇔ (z – 1)^2 = -12 ⇔ z = 1 ± 2 \sqrt3 i\)

d) \(z^4 – z^2– 6 = 0\)

\(⇔ (z^2 – 3)(z^2 + 2) = 0\)

\(\Leftrightarrow \left[ \matrix{
z = \pm \sqrt 3 \hfill \cr
z = \pm \sqrt 2 i \hfill \cr} \right.\)

 

==============

Bài 16. Trên mặt phẳng tọa độ, hãy tìm tập hợp điểm biểu diễn số phức \(z\) thỏa mãn bất đẳng thức:

a) \(| z| < 2\)

b) \(|z – i| ≤ 1\)

c) \(|z – 1 – i| < 1\)

Trả lời:

Đặt \(z = a + bi ( a, b ∈ \mathbb R)\). Ta có:

a) \(\left| z \right| < 2 \Leftrightarrow \sqrt {{a^2} + {b^2}}  < 2 \Leftrightarrow {a^2} + {b^2} < 4\)

Tập hợp các điểm \(M(a; b)\) biểu diễn các số phức \(z\) nằm trong hình tròn tâm \(O\) (gốc tọa độ), bán kính \(2\) (không kể biên)

b)

\(\eqalign{
& \left| {z{\rm{ }}-i} \right|{\rm{ }} \le {\rm{ }}1 \Leftrightarrow |a + (b – 1)i| \le 1 \Leftrightarrow \sqrt {{a^2} + {{(b – 1)}^2}} \le 1 \cr
& \Leftrightarrow {a^2} + {(b – 1)^2} \le 1 \cr} \)

Tập hợp các điểm \(M (a; b)\) biểu diễn các số phức \(z\) nằm trong hình tròn tâm \(I(0, 1)\), bán kính \(1\) (kể cả biên)

c)

\(|z – 1 – i| < 1 ⇔ |(a – 1) + (b – 1)i| < 1 ⇔ (a – 1)^2+ (b – 1)^2 < 1\)

Tập hợp các điểm \(M(a; b)\) biểu diễn số phức \(z\) nằm trong hình tròn (không kể biên) tâm \(I (1, 1)\), bán kính \(1\).