Chương 1: Khảo Sát Và Vẽ Đồ Thị Của Hàm Số
Chương 2 Hàm số lũy thừa, Hàm số mũ và Hàm số Lôgarit
Chương 3: Nguyên Hàm – Tích Phân Và Ứng Dụng
Chương 4: Số phức
Chương 1: Khối Đa Diện
Chương 2: Mặt Nón, Mặt Trụ, Mặt Cầu
Chương 3 Phương pháp tọa độ trong không gian

Ôn tập chương III: Nguyên hàm – Tích phân

toan 12
Ôn tập chương III: Nguyên hàm – Tích phân

Tóm tắt lý thuyết

1. Sơ đồ chung các bài toán tích phân và ứng dụng

 

Ôn tập chương III: Nguyên hàm - Tích phân

2. Bảng công thức nguyên hàm của một số hàm số

Ôn tập chương III: Nguyên hàm - Tích phân

3. Các dạng nguyên hàm từng phần và cách chọn u, dv

Ôn tập chương III: Nguyên hàm - Tích phân

4. Các dạng nguyên hàm vô tỉ và các phép đổi biến số lượng giác hóa

Ôn tập chương III: Nguyên hàm - Tích phân

Bài tập minh họa

Bài tập 1:

Tìm các nguyên hàm sau:

a) \(I = \int\limits {\left( {3x + 1} \right)\left( {x – 2} \right)} \,dx\).

b) \(J = \int\limits {\left( {5{{\sin }^2}x – \sin x + 2} \right)\cos x} \,dx$\).

Lời giải:

a) \(I = \int\limits {\left( {3x + 1} \right)\left( {x – 2} \right)} \,dx\)

\(I = \int\limits {\left( {3{x^2} – 5x – 2} \right)} \,dx = {x^3} – \frac{{5{x^2}}}{2} – 2x + C.\)

b) \(J = \int\limits {\left( {5{{\sin }^2}x – \sin x + 2} \right)\cos x} \,dx$\)

Đặt: \(t = \sin x \Rightarrow dt = \cos xdx\)

Khi đó: \(J = \int\limits {\left( {5{t^2} – t + 2} \right)} \,dt = \frac{{5{t^3}}}{3} – \frac{{{t^2}}}{2} + 2t + C = \frac{5}{3}{\sin ^3}x – \frac{{{{\sin }^2}x}}{2} + 2\sin x + C.\)

Bài tập 2:

Tính các tích phân sau:

a)  \(I=\int_{1}^{3}x(3x+2lnx)dx.\)

b)  \(I=\int_{1}^{2}\frac{x^2+ln^2x}{x}dx.\)

c) \(I = \int\limits_{\frac{{\sqrt 2 }}{2}}^1 {\frac{{\sqrt {1 – {x^2}} }}{{{x^2}}}dx} .\)

Lời giải:

a) \(I=\int_{1}^{2}3x^2dx+\int_{1}^{2}2xlnxdx\)
Đặt \(I_1=\int_{1}^{2}3x^2dx; I_2=\int_{1}^{2}2xlnxdx\)
\(I_1=\int_{1}^{2}3x^2dx=x^3\bigg |^2_1=7.\)
\(I_2=\int_{1}^{2}lnxd(x^2)=(x^2lnx)\bigg|^2_1-\int_{1}^{2}xdx=4ln2- \frac{x^2}{2}\bigg|^2_1=4ln2-\frac{3}{2}.\)
Vậy \(I=I_1+I_2=4ln2-\frac{11}{2}.\)

b) Ta tách tích phân I như sau: \(I=\int_{1}^{2}\frac{x^2+ln^2x}{x}dx=\int_{1}^{2}xdx+\int_{1}^{2}\frac{ln^2x}{x}dx\)
\(I_1=\int_{1}^{2}xdx=\frac{x^2}{2}\bigg|^2_1=\frac{3}{2}\)
\(I_2=\int_{1}^{2}\frac{ln^2x}{x}dx\)
Đặt \(t=lnx\Rightarrow dt=\frac{1}{x}dx\)
Đổi cận: \(x=2\Rightarrow t=ln2;x=1\Rightarrow t=0\)
\(I_2=\int_{0}^{ln2}t^2dt=\frac{t^3}{3}\bigg |^{ln2}_0=\frac{ln^32}{3}\)
Vậy \(I=I_1+I_2=\frac{3}{2}+\frac{ln^32}{3}.\)

c) \(I = \int\limits_{\frac{{\sqrt 2 }}{2}}^1 {\frac{{\sqrt {1 – {x^2}} }}{{{x^2}}}dx} .\)

Đặt \(x = \cos t,t \in \left[ { – \frac{\pi }{2};\frac{\pi }{2}} \right] \Rightarrow dx = – \sin tdt\)

Đổi cận: \(\left\{ \begin{array}{l} x = \frac{{\sqrt 2 }}{2} \Rightarrow t = \frac{\pi }{4}\\ x = 1 \Rightarrow t = 0 \end{array} \right.\)

Khi đó:

\(\begin{array}{l} I = – \int\limits_{\frac{\pi }{4}}^0 {\frac{{\sqrt {1 – {{\cos }^2}t} .\sin t}}{{{{\cos }^2}t}}dt} = \int\limits_0^{\frac{\pi }{4}} {\frac{{\left| {\sin t} \right|.\sin t}}{{{{\cos }^2}t}}dt} \\ = \int\limits_0^{\frac{\pi }{4}} {\left( {\frac{1}{{{{\cos }^2}t}} – 1} \right)dt} = \left. {\left( {\tan t – t} \right)} \right|_0^{\frac{\pi }{4}} = 1 – \frac{\pi }{4}. \end{array}\)

Bài tập 3: 

Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = x2 + x, trục hoành và hai đường thẳng x = 0, x = 1.

Lời giải:

Diện tích hình phẳng cần tính là: \(S=\int_{0}^{1}\left | x^2+x \right |dx\)
Với \(x\in [0;1]\Rightarrow S=\int_{0}^{1}(x^2+x)dx\)
Suy ra \(S=(\frac{x^3}{3}+\frac{x^2}{2})\bigg |^1_0=\frac{5}{6}.\)
Vậy \(S=\frac{5}{6}\).

Bài tập 4:

Cho hình phẳng giới hạn bởi các đường \(y = \frac{1}{{1 + \sqrt {4 – 3{\rm{x}}} }},y = 0,x = 0,x = 1\) quay quanh trục Ox. Tính thể tích V của khối tròn xoay tạo thành.

Lời giải:

Thể tích cần tìm: \(V = \pi \int\limits_0^1 {\frac{{dx}}{{{{\left( {1 + \sqrt {4 – 3x} } \right)}^2}}}}\)

Đặt:\(t = \sqrt {4 – 3x} \Rightarrow dt = – \frac{3}{{2\sqrt {4 – 3x} }}dx \Leftrightarrow dx = – \frac{2}{3}tdt\left( {x = 0 \Rightarrow t = 2;x = 1 \Rightarrow t = 1} \right)\)

Khi đó:

\(\begin{array}{l} V = \frac{{2\pi }}{3}\int\limits_1^2 {\frac{t}{{{{\left( {1 + t} \right)}^2}}}dt} = \frac{{2\pi }}{3}\int\limits_1^2 {\left( {\frac{1}{{1 + t}} – \frac{1}{{{{\left( {1 + t} \right)}^2}}}} \right)dt} \\ = \left. {\frac{{2\pi }}{3}\left( {\ln \left| {1 + t} \right| + \frac{1}{{1 + t}}} \right)} \right|_1^2 = \frac{\pi }{9}\left( {6\ln \frac{3}{2} – 1} \right). \end{array}\)