Chương 1: Khảo Sát Và Vẽ Đồ Thị Của Hàm Số
Chương 2 Hàm số lũy thừa, Hàm số mũ và Hàm số Lôgarit
Chương 3: Nguyên Hàm – Tích Phân Và Ứng Dụng
Chương 4: Số phức
Chương 1: Khối Đa Diện
Chương 2: Mặt Nón, Mặt Trụ, Mặt Cầu
Chương 3 Phương pháp tọa độ trong không gian

Ôn tập chương 3: PHƯƠNG PHÁP TỌA ĐỘ TRONG KHÔNG GIAN – Hình học 12

toan 12
Ôn tập chương 3: PHƯƠNG PHÁP TỌA ĐỘ TRONG KHÔNG GIAN – Hình học 12

Tóm tắt lý thuyết

1. Sơ đồ các dạng toán viết phương trình đường thẳng, mặt phẳng, mặt cầu

Ôn tập chương 3: PHƯƠNG PHÁP TỌA ĐỘ TRONG KHÔNG GIAN - Hình học 12

2. Sơ đồ các công thức định lượng của phương pháp tọa độ trong không gian

Ôn tập chương 3: PHƯƠNG PHÁP TỌA ĐỘ TRONG KHÔNG GIAN - Hình học 12

Bài tập minh họa

Bài tập 1:

Trong không gian với hệ tọa độ Oxyz , cho A(0;-3;-1) và B(-4;1;-3) và mặt phẳng \((P):x-2y+2z-7=0\).
a) Viết phương trình mặt phẳng (Q) đi qua gốc tọa độ, song song với AB và vuông góc với (P).
b) Lập phương trình mặt cầu nhận đoạn thẳng AB là đường kính.

Lời giải:

a) Ta có \(\overrightarrow{AB}=(-4;4;-2),\vec{n}=(1;-2;2)\) là véc tơ pháp tuyến của mặt phẳng (P).
\(\left [ \overrightarrow{AB};\vec{n} \right ]=(4;6;4)\)
(Q) là mặt phẳng đi qua gốc tọa độ O(0;0;0), (Q) song song với AB và vuông góc với mặt phẳng (P) suy ra mặt phẳng (Q) nhận \(\overrightarrow {{n_{(Q)}}} = \frac{1}{2}\left[ {\overrightarrow {AB} ;\vec n} \right] = (2;3;2)\) làm véctơ pháp tuyến.
Vậy phương trình mặt phẳng (Q) là: \(2x+3y+2z=0.\)
b. \(\overrightarrow{AB}=(-4;4;-2)\Rightarrow AB=\sqrt{16+16+4}=6\)
Trung điểm AB là I(-2;-1;-2).
Mặt cầu (S) có tâm I, bán kính \(R=\frac{AB}{2}=3\Rightarrow (S):(x+2)^2+(y+1)^2+(z+2)^2=9\).

Bài tập 2: 

Cho mặt cầu \((S): x^2+y^2+z^2-2x+6y+4z-22=0\) và \((\alpha ):x+2y-2z-8=0\). CRM: \((\alpha )\) cắt (S) theo một đường tròn. Xác định tâm, bán kính đường tròn đó.

Lời giải:

Ôn tập chương 3: PHƯƠNG PHÁP TỌA ĐỘ TRONG KHÔNG GIAN - Hình học 12

Nhận xét:
Tâm đường tròn giao tuyến của mặt cầu S(I;R) và \((\alpha )\) là hình chiếu của I trên \((\alpha )\) với \(r^2+d^2(I;(\alpha ))=R^2\).

  • \((S): (x-1)^2+(y+3)^2+(z+2)^2=36\)

Mặt cầu (S) có tâm I(1;-3;-2), bán kính R = 6.
\(d(I;(\alpha ))=\frac{\left | 1-6+4-8 \right |}{\sqrt{1^2+2^2+(-2)^2}}=\frac{9}{3}=3<R\)
Vậy \((\alpha )\) cắt mặt cầu theo 1 đường tròn.

  • Xác định tâm của H của đường tròn giao tuyến

Ta có H là hình chiếu của I trên \((\alpha )\).
Đường thẳng \(\Delta\) đi qua I và vuông góc với  \((\alpha )\), tức là nhận \(\vec{n_\alpha }=(1;2;-2)\) làm một VTCP có phương trình là:
\(\Delta \left\{\begin{matrix} x=1+t\\ y=-3+2t\\ z=-2-2t \end{matrix}\right.\)
\(H =\Delta \cap (\alpha )\)
\(H\in \Delta \Rightarrow H(1+t;-3+2t;-2-2t)\)
\(H\in (\alpha ) \Rightarrow 1+t+2(-3+2t)-2(-2-2t)-8=0\)
\(\Leftrightarrow 9t-9=0\Leftrightarrow t=1\)
Suy ra tọa độ H(2;-1;-4).

Bán kính đường trình giao tuyến: \(r^2=R^2-IH^2=36-9=27.\)

Vậy \(r=3\sqrt{3}.\)

Bài tập 3:

Cho đường thẳng \(d:\frac{x-12}{4}=\frac{y-9}{3}=\frac{z-1}{1}\) và \((P):3x+5y-z-2=0\)
a) Tìm tọa độ giao điểm A của d và (P).
b) Viết phương trình (Q) đi qua M0(1;2;-1) và vuông góc với d.
c) Tìm tọa độ B’ đối xứng với B(1;0;-1) qua (P).

Lời giải:

a) \(A=d\cap (P)\)

\(A\in d\left\{\begin{matrix} x=12+4t\\ y=9+3t\\ z=1+t \end{matrix}\right. \Rightarrow A(12+4t;9+3t;1+t)\)
\(A\in (P)\) nên \(3(12+4t)+5(9+3t)-(1+t)-2=0\)
\(\Leftrightarrow 26t +78t=0\Leftrightarrow t=-3\)
Vậy tọa độ là A(0;0;-2).
b) \((Q)\perp d\) nên (Q) nhận \(\vec{u_d}=(4;3;1)\) làm một VTPT.
Phương trình mặt phẳng (Q) là \((Q):4(x-1)+3(y-2)+1(z+1)=0\) hay \(4x+3y+z-9=0.\)
Ôn tập chương 3: PHƯƠNG PHÁP TỌA ĐỘ TRONG KHÔNG GIAN - Hình học 12
c) Viết phương trình \(\Delta\) đi qua B và vuông góc (P)
\(\Delta\) \(\perp\) (P) nên \(\Delta\) nhận \(\vec{n_P}=(3;5;-1)\) làm một VTCP.
Phương trình tham số của \(\Delta: \left\{\begin{matrix} x=1+3t\\ y=5t\\ z=-1-t \end{matrix}\right.\)
Ôn tập chương 3: PHƯƠNG PHÁP TỌA ĐỘ TRONG KHÔNG GIAN - Hình học 12

H là hình chiếu của B trên (P)
\(H=\Delta \cap (P)\)
\(H\in \Delta \Rightarrow H(1+3t;5t;-1-t)\)
\(H\in(P)\) nên \(3(1+3t)+25t+1+t-2=0\)

\(\Leftrightarrow 35t+2=0\)
\(\Leftrightarrow t=-\frac{2}{35}\)
\(H\left ( \frac{29}{35};-\frac{2}{7};-\frac{33}{35} \right )\)
H là trung điểm BB’ nên: \(\left\{\begin{matrix} x_{B’}=2x_H-x_B=\frac{23}{35}\\ \\ y_{B’}=2y_H-y_B=-\frac{4}{7}\\ \\ z_{B’}=2z_H-z_B=\frac{2}{35} \end{matrix}\right.\)
Vậy tọa độ \(B’ \left ( \frac{23}{35};-\frac{4}{7};\frac{2}{35} \right ).\)