Giải bài tập 8 trang 44 SGK Giải tích 12
Cho hàm số \(y=x^3+(m+3)x^2+1-m\) (m là tham số) có đồ thị là (Cm).
a) Xác định m để hàm số có điểm cực đại là x=-1.
b) Xác định m để đồ thị (Cm) cắt trục hoành tại x=-2.
Ta có lời giải chi tiết câu a, b bài 8 như sau:
Câu a:
Xét hàm số \(y=x^3+(m+3)x^2+1-m\)
Tập xác định: \(D=\mathbb{R}.\)
Ta có:
\(y’ = 3{x^2} + 2(m + 3)x\)
\(y’ = 0 \Leftrightarrow \left[ \begin{array}{l} x = 0\\ x = – \frac{{2(m + 3)}}{3} =-\frac{2}{3}m-2\end{array} \right.\)
Xảy ra hai trường hợp đối với dấu của y’:
Nếu \(- \frac{{2(m + 3)}}{3} > 0,\) ta có bảng biến thiên:
Vây hàm số đạt cực đại tại x=0, không thỏa yêu cầu bài toán.
Suy ra để hàm số đạt cực đại thì \(- \frac{{2(m + 3)}}{3}=-1<0 \Leftrightarrow m=-\frac{3}{2}.\)
Ta có: \(y”=6x+2(m+3);y”(-1)=2m\)
Hàm số đạt cực đại tại x=-1 nếu: \(\left\{ \begin{array}{l} – \frac{{2(m + 3)}}{3} = – 1\\ y”( – 1) < 0 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} m = – \frac{3}{2}\\ m < 0 \end{array} \right.\)
Thử lại, với \(m=-\frac{3}{2}\) thì x=-1 là điểm cực đại của hàm số.
Câu b:
(Cm) cắt Ox tại tại điểm có hoành độ bằng -2 suy ra tọa độ giao điểm là (-2;0).
Thay vào hàm số ta có:
\(\begin{array}{l} 0 = {( – 2)^3} + (m + 3).{( – 2)^2} + 1 – m \Leftrightarrow 4m + 12 – 8 + 1 – m = 0\\ \Leftrightarrow 3m + 5 = 0 \Leftrightarrow m = – \frac{5}{3}. \end{array}\)
Vậy với \(m=-\frac{5}{3}\) thì (Cm) cắt trục hoành tại điểm có hoành độ x=-2