Giải bài tập SGK bài 4 Đường tiệm cận – Toán 12
*************
Tìm các tiệm cận của đồ thị hàm số:
a) \(y=\frac{x}{2-x}\).
b) \(y=\frac{-x+7}{x+1}\).
c) \(y=\frac{2x-5}{5x-2}\).
d) \(y=\frac{7}{x}-1\).
Để giải câu a, b, c, d của bài 1, các em cùng ôn lại lý thuyết về sự tồn tại tiệm cận đứng và tiệm cận ngang của đồ thị hàm số:
Với hàm số phân thức bậc nhất trên bậc nhất \(y = \frac{{ax + b}}{{cx + d}}\left( {c \ne 0;ad – bc \ne 0} \right)\) ta có thể suy ra ngay tiệm cận ngang là đường thẳng y=a/c, tiệm cận đứng là đường thẳng x=-d/c.
Lời giải chi tiết các câu a, b, c, d bài 1 như sau:
Câu a:
Câu b:
Câu c:
Câu d:
Ta có: \(\mathop {\lim }\limits_{x \to – \infty } \left( {\frac{7}{x} – 1} \right) = – 1;\,\mathop {\lim }\limits_{x \to + \infty } \left( {\frac{7}{x} – 1} \right) = – 1\) nên đường thẳng y=-1 là tiệm cận ngang của đồ thị hàm số.
Ta có: \(\mathop {\lim }\limits_{x \to {0^ + }} \left( {\frac{7}{x} – 1} \right) = + \infty ;\,\mathop {\lim }\limits_{x \to {0^ – }} \left( {\frac{7}{x} – 1} \right) = – \infty\) nên đường thẳng x=0 là tiệm cận đứng của đồ thị hàm số.
Tìm các tiệm cận đứng và tiệm cận ngang của đồ thị hàm số:
a) \(y=\frac{2-x}{9-x^2}\) ;
b) \(y=\frac{x^2+x+1}{3-2x-5x^2}\);
c) \(y=\frac{x^2-3x+2}{x+1}\);
d) \(y=\frac{\sqrt {x}+1}{\sqrt {x}-1}\);
Trước khi giải bài 2 ta cùng nhắc lại về điều kiện sự tồn tại tiệm cận đứng và tiệm cận ngang của đồ thị hàm số:
Đường thẳng \(y=b\) được gọi là tiệm cận ngang của đồ thị hàm số \(y = f(x)\) nếu thỏa mãn một trong các điều kiện sau:
Đường thẳng \(x=a\) được gọi là đường tiệm cận đứng của đồ thị hàm số \(y = f(x)\) nếu thỏa mãn một trong các điều kiện sau:
Với hàm số \(y=f(x) = \frac{{h(x)}}{{g(x)}}\) để tìm tiệm cận đứng ta tiến hành giải phương trình g(x)=0. Giả sử nếu x0 là nghiệm của phương trình g(x)=0, nếu h(x0) khác 0, thì đường thẳng x=x0 là tiệm cận đứng của đồ thị hàm số y=f(x).
Lời giải chi tiết câu a, b, c, d bài 2 như sau:
Câu a:
Câu b:
\(\begin{array}{l} \mathop {\lim }\limits_{x \to {{\left( { – 1} \right)}^ + }} \frac{{{x^2} + x + 1}}{{3 – 2x – 5{x^2}}} = + \infty ;\,\,\mathop {\lim }\limits_{x \to {{\left( { – 1} \right)}^ – }} \frac{{{x^2} + x + 1}}{{3 – 2x – 5{x^2}}} = – \infty \\ \mathop {\lim }\limits_{x \to {{\left( {\frac{3}{5}} \right)}^ + }} \frac{{{x^2} + x + 1}}{{3 – 2x – 5{x^2}}} = – \infty ;\,\,\mathop {\lim }\limits_{x \to {{\left( {\frac{3}{5}} \right)}^ – }} \frac{{{x^2} + x + 1}}{{3 – 2x – 5{x^2}}} = + \infty \end{array}\)
Nên đồ thị hàm số có hai tiệm cận đứng là các đường thẳng: \(x=-1;x=\frac{3}{5}\).
Nên đồ thị hàm số có tiệm cận ngang là đường thẳng \(y=-\frac{1}{5}\).
Câu c:
Câu d:
Hàm số xác định khi: \(\left\{\begin{matrix} x\geq 0\\ \sqrt{x}-1\neq 0 \end{matrix}\right. \Leftrightarrow \left\{\begin{matrix} x\geq 0\\ x\neq 1 \end{matrix}\right.\)
Vì \(\lim_{x\rightarrow 1^-}\frac{\sqrt{x}+1}{\sqrt{x}-1}=-\infty\)( hoặc \(\lim_{x\rightarrow 1^+}\frac{\sqrt{x}+1}{\sqrt{x}-1}=+\infty\) ) nên đường thẳng x = 1 là một tiệm cận đứng của đồ thị hàm số.
Vì \(\lim_{x\rightarrow +\infty }\frac{\sqrt{x}+1}{\sqrt{x}-1}=\lim_{x\rightarrow +\infty }\frac{\sqrt{x}(1+\frac{1}{\sqrt{x}})}{\sqrt{x}(1-\frac{1}{\sqrt{x}})}=1\) nên đường thẳng y = 1 là một tiệm cận ngang của đồ thị hàm số.