Trắc nghiệm Ứng dụng của tích phân trong hình học
Cho đồ thị hàm số y = f(x). Xác định công thức tính diện tích S của hình phẳng (phần gạch chéo) trong hình.
Tính diện tích S của hình phẳng giới hạn bởi đồ thị hàm số \(y = {x^4} – 5{x^2} + 4\), trục hoành và hai đường thẳng \(x = 0;x = 1\).
Tính diện tích S của hình phẳng giởi hạn bởi đồ thị hàm số \(y = {x^3} – x\) và đồ thị hàm số \(y = {x^2} – x.\)
Tính thể tích của vật thể nằm giữa hai mặt phẳng \(x = 0;x = \pi\), biết rằng thiết diện của vật thể với mặt phẳng vuông góc với trục Ox tại điểm có hoành độ \(x\left( {0 \le x \le \pi } \right)\) là một tam giác đều có cạnh là \(2\sqrt {\sin x}\).
Tính thể tích V của khối tròn xoay sinh ra bởi hình phẳng giới hạn bởi các đường \(y = \frac{4}{{x – 4}},y = 0,x = 0,x = 2\) quay một vòng quanh trục Ox là (theo đơn vị thể tích).