Chương 1: Khảo Sát Và Vẽ Đồ Thị Của Hàm Số
Chương 2 Hàm số lũy thừa, Hàm số mũ và Hàm số Lôgarit
Chương 3: Nguyên Hàm – Tích Phân Và Ứng Dụng
Chương 4: Số phức
Chương 1: Khối Đa Diện
Chương 2: Mặt Nón, Mặt Trụ, Mặt Cầu
Chương 3 Phương pháp tọa độ trong không gian

Giải bài tập SGK bài 3 Giá trị lớn nhất và nhỏ nhất của hàm số – Toán 12

toan 12
Giải bài tập SGK bài 3 Giá trị lớn nhất và nhỏ nhất của hàm số – Toán 12

Giải bài tập SGK bài 3 Giá trị lớn nhất và nhỏ nhất của hàm số – Toán 12

************

 

Bài tập 1 trang 23 SGK Giải tích 12

Tính giá trị lớn nhất, giá trị nhỏ nhất của hàm số:

a) \(y = x^3 – 3x^2 – 9x + 35\) trên các đoạn \([-4; 4]\) và \([0;5]\).

b) \(y = x^4 – 3x^2 + 2\) trên các đoạn \([0;3]\) và \([2;5]\).

c) \(y =\frac{ (2-x)}{(1-x)}\) trên các đoạn \([2;4]\) và \([-3;-2]\).

d) \(y =\sqrt{(5-4x)}\) trên đoạn \([-1;1]\).

Hướng dẫn giải chi tiết bài 1

Quy tắc tìm GTLN và GTNN của hàm số \(f(x)\) liên tục trên một đoạn \([a;b].\)

  • Tìm các điểm \(x_i\in (a ; b)\) (i = 1, 2, . . . , n) mà tại đó \(f'(x_i)=0\) hoặc \(f'(x_i)\) không xác định.
  • Tính \(f(x),f(b),f(x_i)\) (i = 1, 2, . . . , n).
  • Khi đó :  Giải bài tập SGK bài 3 Giá trị lớn nhất và nhỏ nhất của hàm số - Toán 12

​Áp dụng ta giải câu a, b, c, d bài 1 như sau:

Câu a:

Xét hàm số \(y = x^3 – 3x^2 – 9x + 35\)

Tập xác định \(D=\mathbb{R}\).

Hàm số liên tục trên các đoạn [-4;4] và [0;5] nên có GTLN và GTNN trên mỗi đoạn này.

Ta có: y’ = 3x2 – 6x – 9 = 3(x2 – 2x – 3)

Trên đoạn [-4;4]:

\(y’ = 0 \Leftrightarrow \left[ \begin{array}{l} x = 3 \in \left[ { – 4;4} \right]\\ x = – 1 \in \left[ { – 4;4} \right] \end{array} \right.\)

Ta có: y(-4)=-41; y(4)=15; y(-1)=40; y(3)=8.

Vậy:

Giá trị lớn nhất của hàm số là \(\mathop {\max y}\limits_{x \in \left[ { – 4;4} \right]} = y( – 1) = 40\).

Giá trị nhỏ nhất của hàm số là \(\mathop {\min y}\limits_{x \in \left[ { – 4;4} \right]} = y( – 4) = – 41.\)

Trên đoạn [0;5]:

\(y’ = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}} {x = 3 \in \left[ {0;5} \right]}\\ {x = – 1 \notin \left[ {0;5} \right]} \end{array}} \right.\)

Ta có:  y(0)=35; y(5)=40; y(3)=8.

Vậy:

Giá trị lớn nhất của hàm số là \(\mathop {\max y}\limits_{x \in \left[ {0;5} \right]} = y(5) = 40.\)

Giá trị nhỏ nhất của hàm số là \(\mathop {\min y}\limits_{x \in \left[ {0;5} \right]} = y(3) = 8.\)

Câu b:

Xét hàm số \(y = x^4 – 3x^2 + 2\)

Tập xác định D=R

Hàm số liên tục trên các đoạn \([0;3]\) và \([2;5]\) nên có GTLN và GTNN trên các đoạn này:

Đạo hàm: y’=4x3-6x.

Trên đoạn [0;3]:

\(y’ = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}} {x = – \sqrt {\frac{3}{2}} \notin \left[ {0;3} \right]}\\ {x = 0 \in \left[ {0;3} \right]}\\ {x = \sqrt {\frac{3}{2}} \in \left[ {0;3} \right]} \end{array}} \right.\)

Ta có: y(0)=2; \(y\left( {\sqrt {\frac{3}{2}} } \right) = – \frac{1}{4}\); y(3)=56.

Vậy:

Giá trị lớn nhất của hàm số:\(\mathop {\max y}\limits_{x \in \left[ {0;3} \right]} = y\left( 3 \right) = 56.\)

Giá trị nhỏ nhất của hàm số: \(\mathop {\min y}\limits_{x \in \left[ {0;3} \right]} = y\left( {\sqrt {\frac{3}{2}} } \right) = – \frac{1}{4}.\)

Trên đoạn [2;5]:

\(y’ = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}} {x = – \sqrt {\frac{3}{2}} \notin \left[ {2;5} \right]}\\ {x = 0 \notin \left[ {2;5} \right]}\\ {x = \sqrt {\frac{3}{2}} \notin \left[ {0;3} \right]} \end{array}} \right.\)

Ta có: y(2)=6; y(5)=552

Vậy:

Giá trị lớn nhất của hàm số \(\mathop {\max y}\limits_{x \in \left[ {2;5} \right]} = y\left( 6 \right) = 552.\)

Giá trị nhỏ nhất của hàm số: \(\mathop {\min y}\limits_{x \in \left[ {2;5} \right]} = y\left( 2 \right) = 6.\)

Câu c:

Xét hàm số \(y =\frac{ (2-x)}{(1-x)}\)

Hàm số có tập xác định D = R \{1} và liên tục trên các đoạn [2;4] và [-3;-2] thuộc D, do đó hàm số có GTLN, GTNN trên mỗi đoạn này.

Ta có : Giải bài tập SGK bài 3 Giá trị lớn nhất và nhỏ nhất của hàm số - Toán 12

Trên đoạn [2;4]: \(y(2)=0;y(4)=\frac{2}{3}.\)

Vậy:

Giá trị nhỏ nhất của hàm số: \(\mathop {\min y}\limits_{x \in \left[ {2;4} \right]} = y\left( 2 \right) = 0.\)

Giá trị lớn nhất của hàm số: \(\mathop {\max y}\limits_{x \in \left[ {2;4} \right]} = y\left( 4 \right) = \frac{2}{3}.\)

Trên đoạn [-3;-2]: \(y(-3)=\frac{5}{4};y(-2)=\frac{4}{3}.\)

Vậy:

Giá trị nhỏ nhất của hàm số: \(\mathop {\min y}\limits_{x \in \left[ { – 3;-2} \right]} = y\left( { – 3} \right) = \frac{5}{4}.\)

Giá trị lớn nhất của hàm số: \(\mathop {\max y}\limits_{x \in \left[ { – 3; – 2} \right]} = y\left( { – 2} \right) = \frac{4}{3}.\)

Câu d:

Xét hàm số \(y =\sqrt{(5-4x)}\)

Hàm số có tập xác định \({\rm{D = }}\left( { – \infty ;\frac{5}{4}} \right]\) nên xác định và liên tục trên đoạn [-1;1], do đó có GTLN, GTNN trên đoạn [-1;1].

Ta có:\(y’ = – \frac{2}{{\sqrt {5 – 4x} }} < 0,\forall x \in \left[ { – 1;1} \right].\)

Trên đoạn [-1;1]: y(-1)=3; y(1)=1.

 

Vậy:

Giá trị lớn nhất của hàm số \(\mathop {\max }\limits_{x \in \left[ { – 1;1} \right]} y = y( – 1) = 3.\)

Giá trị nhỏ nhất của hàm số \(\mathop {\min }\limits_{x \in \left[ { – 1;1} \right]} y = y(1) = 1.\)

 

Bài tập 2 trang 24 SGK Giải tích 12

Trong số các hình chữ nhật cùng có chu vi 16 cm, hãy tìm hình chữ nhật có diện tích lớn nhất.

Hướng dẫn giải chi tiết bài 2

Với bài 2 ta có hai cách giải thường được sử dụng:

+ Cách 1: áp dụng bất đẳng thức cô-si đã học ở lớp 10.

+ Cách 2: ứng dụng đạo hàm để tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số như nội dung bài vừa học.

Dưới đây là hướng dẫn giải chi tiết bài 2 bằng 2 cách:

  • Cách 1: Áp dụng bất đăng thức cô-si

Kí hiệu x, y thứ tự là chiều dài và chiều rộng của hình chữ nhật (0 < x, y < 16).

Khi đó x + y = 8.

Theo bất đẳng thức Cô-si, ta có: \(8=x+y\geq 2 \sqrt {x.y}\Rightarrow xy\leq 16.\)

\(xy=16\Leftrightarrow x=y=4.\)

Vậy diện tích hình chữ nhật lớn nhất bằng 16 cm2 khi x = y = 4(cm), tức là khi hình chữ nhật là hình vuông.

  • Cách 2: Ứng dụng đạo hàm để tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số

Gọi x,y lần lượt là chiều dài và chiều rộng của hình chữ nhật (8>x>0; 8>y>0).

Khi đó chu vi: p=2(x+y)=16 ⇔ x+y=8 ⇔ y=8-x.

Ta có diện tích của hình chữ nhật là S=x.y=x(8-x) ⇔ S=-x2+8x.

Xét hàm số: S(x) = -x2+8x trên khoảng (0,8) ta có:

S’=-2x+8; S’=0 ⇔ x=4

Bảng biến thiên:

Giải bài tập SGK bài 3 Giá trị lớn nhất và nhỏ nhất của hàm số - Toán 12

Từ bảng biến thiên ta thấy hàm số đạt giá trị lớn nhất tại x=4 khi đó maxS = 16.

Với x=4 suy ra y=4.

Vậy hình vuông có cạnh bằng 4 là hình có diện tích lớn nhất.

 

Bài tập 3 trang 24 SGK Giải tích 12

Trong tất cả các hình chữ nhật cùng có diện tích 48 m, hãy xác định hình chữ nhật có chu vi nhỏ nhất.

Hướng dẫn giải chi tiết bài 3

Với bài 3 ta có hai cách giải thường được sử dụng như sau:

+ Cách 1: áp dụng bất đẳng thức cô-si đã học ở lớp 10.

+ Cách 2: ứng dụng đạo hàm để tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số như nội dung bài vừa học.

Dưới đây là hướng dẫn giải chi tiết bài 3 bằng 2 cách nêu trên:

  • Cách 1: Sử dụng bất đẳng thức cô-si:

Kí hiệu x, y thứ tự là chiều dài và chiều rộng của hình chữ nhật (x, y > 0).

Khi đó xy = 48.
Theo bất đẳng thức Cô-si, ta có : Giải bài tập SGK bài 3 Giá trị lớn nhất và nhỏ nhất của hàm số - Toán 12

Giải bài tập SGK bài 3 Giá trị lớn nhất và nhỏ nhất của hàm số - Toán 12.
Vậy chu vi hình chữ nhật nhỏ nhất bằng Giải bài tập SGK bài 3 Giá trị lớn nhất và nhỏ nhất của hàm số - Toán 12 (m) khi Giải bài tập SGK bài 3 Giá trị lớn nhất và nhỏ nhất của hàm số - Toán 12 (m), tức là khi hình chữ nhật là hình vuông.

  • Cách 2: Ứng dụng đạo hàm để tìm giá trị lớn nhất và nhỏ nhất của hàm số

Gọi x,y lần lượt là chiều dài và chiều rộng của hình chữ nhật (x>0,y>0)

Ta có:

Khi đó chu vi của hình chữ nhật là \(p=2(x+y) \Leftrightarrow p=2x+\frac{96}{x}.\)

Xét hàm số \(p(x)=2x+\frac{96}{x}.\) trên \(\left( {0; + \infty } \right).\)

\(p'(x) = 2 – \frac{{96}}{{{x^2}}};\,\,p'(x) = 0 \Leftrightarrow x = 4\sqrt 3 {\mkern 1mu}\) (do x>0).

Bảng biến thiên:

Giải bài tập SGK bài 3 Giá trị lớn nhất và nhỏ nhất của hàm số - Toán 12

Từ bảng biến thiên ta có: \(\min p = 16\sqrt 3\) khi \(x = 4\sqrt 3 \,\).

Với \(x = 4\sqrt 3 \,\Rightarrow y=\frac{48}{x}=4\sqrt 3\).

Vậy hình vuông có cạnh \(4\sqrt 3 \,\) là hình có chu vi nhỏ nhất theo yêu cầu bài toán.

 

Bài tập 4 trang 24 SGK Giải tích 12

Tính giá trị lớn nhất của các hàm số sau:

a) \(y=\frac{4}{1+x^2}\).

b) \(y=4x^3-3x^4\).

Hướng dẫn giải chi tiết bài 4

Bài 4 yêu cầu tìm giá trị lớn nhất của hàm số mà không có miền cho trước thì ta hiểu yêu cầu bài tập là tập giá trị lớn nhất của hàm số trên tập xác định.

Để tìm GTLN, GTNN của hàm số \(y=f(x)\) xác định trên tập hợp D, ta tiến hành khảo sát sự biến thiên của hàm số trên D, rồi căn cứ vào bảng biến thiên của hàm số đưa ra kết luận về GTLN và GTNN của hàm số.

Dưới đây là lời giải chi tiết bài 4:

Câu a: 

Tập xác định \(D=\mathbb{R}.\)

Đạo hàm: Giải bài tập SGK bài 3 Giá trị lớn nhất và nhỏ nhất của hàm số - Toán 12.

\(y’=0\Leftrightarrow x=0.\)

Bảng biến thiên:

Giải bài tập SGK bài 3 Giá trị lớn nhất và nhỏ nhất của hàm số - Toán 12

Từ bảng biến thiên ta thấy giá trị lớn nhất của hàm số là \(\max y = y(0) = 4.\)

Câu b: 

Tập xác định \(D=\mathbb{R}.\)

Đạo hàm y’ = 12x2 – 12x3 = 12x2 (1 – x).

\(y’ = 0 \Leftrightarrow \left[ \begin{array}{l} x = 0\\ x = 1 \end{array} \right.\)

Bảng biến thiên:

Giải bài tập SGK bài 3 Giá trị lớn nhất và nhỏ nhất của hàm số - Toán 12

Từ bảng biến thiên ta thấy giá trị lớn nhất của hàm số là \(\max y = y(1) = 1.\)

 

Bài tập 5 trang 24 SGK Giải tích 12

Tính giá trị nhỏ nhất của các hàm số sau:

a) \(y = \left | x \right |\);

b) \(y = x+\frac{4}{x} ( x > 0)\)

Hướng dẫn giải chi tiết bài 5

Với bài 5 ta áp dụng cách giải sau:

Để tìm GTLN, GTNN của hàm số \(y=f(x)\) xác định trên tập hợp D, ta tiến hành khảo sát sự biến thiên của hàm số trên D, rồi căn cứ vào bảng biến thiên của hàm số đưa ra kết luận về GTLN và GTNN của hàm số.

Có nhiều trường hợp ta có thể nhìn vào hàm số và đánh giá ngay được giá trị lớn nhất và nhỏ nhất của hàm số, cụ thể ở đây là câu a bài 5.

Áp dụng ta giải câu a, b bài 5 như sau:

Câu a:

Cách 1: Ứng dụng đạo hàm

y = Giải bài tập SGK bài 3 Giá trị lớn nhất và nhỏ nhất của hàm số - Toán 12 = Giải bài tập SGK bài 3 Giá trị lớn nhất và nhỏ nhất của hàm số - Toán 12 .

Tập xác định \(D=\mathbb{R}.\)

\(\mathop {\lim }\limits_{x \to {0^ + }} \frac{{f(x) – f(0)}}{{x – 0}} = \mathop {\lim }\limits_{x \to {0^ + }} \frac{x}{x} = 1.\)

\(\mathop {\lim }\limits_{x \to {0^ – }} \frac{{f(x) – f(0)}}{{x – 0}} = \mathop {\lim }\limits_{x \to {0^ – }} \frac{{ – x}}{x} = – 1.\)

Vậy hàm số không có đạo hàm tại x=0.

Bảng biến thiên:

Giải bài tập SGK bài 3 Giá trị lớn nhất và nhỏ nhất của hàm số - Toán 12

Từ bảng biến thiên ta thấy \(\min y = y(0) = 0.\)

Cách 2: Dùng tính chất của hàm số

Tập xác định \(D=\mathbb{R}.\)

Ta có: \(\left| x \right| \ge 0,\forall x \in\mathbb{R} ,\) dấu bằng xảy ra khi x=0. Vậy \(\min y = y(0) = 0.\)

Câu b:

Tập xác định \(D = \left( {0; + \infty } \right).\)

Giải bài tập SGK bài 3 Giá trị lớn nhất và nhỏ nhất của hàm số - Toán 12

\(y’ = 0 \Leftrightarrow x = 2.\)

Bảng biến thiên:

Giải bài tập SGK bài 3 Giá trị lớn nhất và nhỏ nhất của hàm số - Toán 12

Vậy giá trị nhỏ nhất của hàm số là \(\mathop {\min }\limits_{x\left( {0; + \infty } \right)} = y(2) = 4.\)

Với câu b bài 5 ta cũng có thể dùng bất đẳng thức côsi để giải.