Bài 2: Phương trình mặt phẳng
Cho hai vectơ \(\vec{a}=(x_1;y_1;z_1)\) và \(\vec{b}=(x_2;y_2;z_2)\), vectơ \(\overrightarrow n = \left[ {\overrightarrow a ;\overrightarrow b } \right]\) được gọi là tích có hướng của hai vectơ \(\overrightarrow a\) và \(\overrightarrow b\) được xác định như sau:
\(\left[ {\vec a,\vec b} \right] = \left( {\left| {\begin{array}{*{20}{c}}
{{y_1}\;{\mkern 1mu} \;{\mkern 1mu} \;{\mkern 1mu} {z_1}}\\
{{y_2}\;{\mkern 1mu} \;{\mkern 1mu} \;{\mkern 1mu} {z_2}}
\end{array}} \right|;\left| {\begin{array}{*{20}{c}}
{{z_1}\;{\mkern 1mu} \;{\mkern 1mu} \;{\mkern 1mu} {x_1}}\\
{{z_2}\;{\mkern 1mu} \;{\mkern 1mu} \;{\mkern 1mu} {x_2}}
\end{array}} \right|;\left| {\begin{array}{*{20}{c}}
{{x_1}\;{\mkern 1mu} \;{\mkern 1mu} \;{\mkern 1mu} {y_1}}\\
{{x_2}\;{\mkern 1mu} \;{\mkern 1mu} \;{\mkern 1mu} {y_2}}
\end{array}} \right|} \right) = ({y_1}{z_2} – {y_2}{z_1};{z_1}{x_2} – {z_2}{x_1};{x_1}{y_2} – {x_2}{y_1})\)
Vectơ \(\overrightarrow n\) vuông góc với cả hai vectơ \(\overrightarrow a\) và \(\overrightarrow b.\)
Cho mặt phẳng (P). Nếu vectơ \(\vec n\) khác \(\vec 0\) có giá vuông góc với (P) thì \(\vec n\) được gọi là Vectơ pháp tuyến của của (P).
Phương trình tổng quát của mặt phẳng có dạng: \(Ax+By+Cz+D=0, \,\, A^2+B^2+C^2\neq 0)\).
Với \(\overrightarrow{n}=(A;B;C)\) là Vectơ pháp tuyến (VTPT).
Mặt phẳng (P) đi qua điểm \({{M_0}({x_0};{y_0};{z_0})}\), nhận vectơ \({\vec n = (A;B;C)}\) làm VTPT có phương trình tổng quát là:
\(A(x-x_0)+B(y-y_0)+C(z-z_0)=0\)
Mặt phẳng (P) đi qua A(a;0;0), B(0;b;0), C(0;0;c) có phương trình tổng quát là: \(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1\).
Cho hai mặt phẳng \((\alpha _1) \ A_1x+B_1y+C_1z+D_1=0\) có một VTPT \(\vec{n_1}=(A_1;B_1;C_1)\) và \((\alpha _2) \ A_2x+B_2y+C_2z+D_2=0\) có một VTPT \(\vec{n_2}=(A_2;B_2;C_2)\).
Khi đó vị trí tương đối giữa \((\alpha_1)\) và \((\alpha_2)\) được xác định như sau:
Nếu \(A_2, B_2, C_2, D_2 \neq 0\): \((\alpha _1)//(\alpha _2)\Leftrightarrow \frac{A_1}{A_2}=\frac{B_1}{B_2}=\frac{C_1}{C_2}\neq \frac{D_1}{D_2}\).
Nếu \(A_2, B_2, C_2, D_2 \neq 0\) thì \((\alpha _1)\equiv (\alpha _2)\Leftrightarrow \frac{A_1}{A_2}=\frac{B_1}{B_2}=\frac{C_1}{C_2}= \frac{D_1}{D_2}\).
Nếu \(A_2,B_2,C_2\neq 0\) thì \((\alpha _1),(\alpha _2)\) cắt nhau \(\Leftrightarrow \Bigg \lbrack\begin{matrix} \frac{A_1}{A_2} \neq \frac{B_1}{B_2}\\ \frac{A_1}{A_2} \neq \frac{C_1}{C_2}\\ \frac{B_1}{B_2} \neq \frac{C_1}{C_2} \end{matrix}\).
Cho mặt phẳng (P): \(Ax+By+Cz+D=0 \ \ (A^2+B^2+C^2\neq 0)\)
và điểm \(M(x_0,y_0,z_0)\).
Khoảng cách từ M đến (P) được xác định bởi công thức: \(d(M;(P))=\frac{\left | Ax_0+Ay_0+Az_0+D \right |}{\sqrt{A^2+B^2+C^2}}\).
Cho hai mặt phẳng \((P)\;{A_1}x + {B_1}y + {C_1}z + {D_1} = 0\) và \((Q)\;{A_2}x + {B_2}y + {C_2}z + {D_2} = 0\) có VTPT lần lượt là:
\(\vec{n}_P=(A_1;B_1;C_1)\) và \(\vec{n}_Q=(A_2;B_2;C_2)\), khi đó:
\(cos\widehat {(P,Q)} = \left| {cos({{\vec n}_P};{{\vec n}_Q})} \right| = \frac{{\left| {{{\vec n}_P}.{{\vec n}_Q}} \right|}}{{\left| {{{\vec n}_P}} \right|\left| {{{\vec n}_Q}} \right|}}\)\(=\frac{\left | A_1B_2+B_1B_2+C_1C_2 \right |}{\sqrt{A^2_1+B_1^2+C^2_1} .\sqrt{A^2_2+B_2^2+C^2_2}}\)
Chú ý:
Cho ba điểm A(2;0;0), B(0;3;1), C(-1;4;2).
a) Chứng minh: A,B,C là 3 đỉnh của một tam giác
b) Tính diện tích tam giác ABC.
c) Tính độ dài đường cao kẻ từ đỉnh A của tam giác ABC.
a) Ta có \(\overrightarrow {AB} ( – 2;3;1),\overrightarrow {AC} ( – 3;4;2) \Rightarrow \left[ {\overrightarrow {AB} ,\overrightarrow {AC} } \right] = (2;1;1) \ne \overrightarrow 0\) nên \(\overrightarrow {AB} ,\overrightarrow {AC}\) không cùng phương do đó A, B, C tạo thành 3 đỉnh của tam giác.
b) \({S_{ABC}} = \frac{1}{2}\left| {\left[ {\overrightarrow {AB} ,\overrightarrow {AC} } \right]} \right| = \frac{{\sqrt 6 }}{2}\).
c) \(AH = \frac{{2{S_{\Delta ABC}}}}{{BC}} = \frac{{\sqrt 6 }}{{\sqrt {{1^2} + {{(4 – 3)}^2} + {{(2 – 1)}^2}} }} = \sqrt 2\).
Cho 4 điểm: A(1;0;1), B(-1;1;2), C(-1;1;0), D(2;-1;-2)
a) Chứng minh rằng: A,B,C,D là 4 đỉnh của một tứ diện.
c) Tính độ dài đường cao AH của tứ diện ABCD.
a) Ta có: \(\overrightarrow {AB} = \left( { – 2;1;1} \right);\) \(\overrightarrow {AC} = \left( { – 2;1; – 1} \right)\,;\,\overrightarrow {AD} = \left( {1; – 1; – 3} \right).\)
\(\left[ {\overrightarrow {AC} ;\overrightarrow {AC} } \right].\overrightarrow {AD} = 2 \ne 0.\)
Vậy 4 điểm A,B,C,D không đồng phẳng.
Suy ra A,B,C,D là 4 đỉnh của một tứ diện.
b) \({V_{ABCD}} = \frac{1}{6}\left| {\left[ {\overrightarrow {AB} ;\overrightarrow {AC} } \right]\overrightarrow {AD} } \right| = \frac{1}{3}\)
Mà: \({V_{ABCD}} = \frac{1}{3}.{S_{BCD}}.AH \Rightarrow AH = \frac{1}{{{S_{BCD}}}}.\)
\(\left[ {\overrightarrow {BC} ;\overrightarrow {CD} } \right] = \left( { – 4; – 6;0} \right) \Rightarrow {S_{BCD}} = \frac{1}{2}\left| {\left[ {\overrightarrow {BC} ;\overrightarrow {CD} } \right]} \right| = \sqrt {13} .\)
Vậy: \(AH = \frac{1}{{\sqrt {13} }}.\)
Trong không gian với hệ tọa độ Oxyz, viết phương trình mặt phẳng (P) trong các trường hợp sau:
a) (P) đi qua điểm \({M_0}( – 2;3;1)\) và vuông góc với đường thẳng AB với \(A(3;1; – 2):B(4; – 3;1).\)
b) (P) đi qua điểm \({M_0}( – 2;3;1)\) và song song với mặt phẳng (Q): \(4x – 2y + 3z – 5 = 0.\)
c) (P) đi qua điểm \({M_0}( – 2;3;1)\) và vuông góc với hai mặt phẳng (Q): x-3y+2z-1=0; (R): 2x+y-z-1=0.
d) (P) đi qua 3 điểm \(A(2;0; – 1);B(1; – 2;3);C(0;1;2).\)
a) Mặt phẳng (P) có VTPT \(\overrightarrow n = \overrightarrow {AB} = (1; – 4;3).\)
\(1(x + 2) – 4(y – 3) + 3(z – 1) = 0\)\(\Leftrightarrow (P):x – 4y + 3z + 11 = 0.\)
Mặt khác: \({M_0}( – 2;3;1) \in (P) \Rightarrow D = 11\). Suy ra: \((P):x – 4y + 3z + 11 = 0.\)
b)
\((P):4(x + 2) – 2(y – 3) + 3(z – 1) = 0 \Leftrightarrow (P):4x – 2y + 3z + 11 = 0.\)
\({M_0}( – 2;3;1)\in(P)\Rightarrow D=11\Rightarrow (P):{\rm{4x – 2}}y + 3z + 11 = 0.\)
c)
Ta có: \({\left. {\begin{array}{*{20}{l}} {(P) \bot (Q) \Rightarrow VTPT\overrightarrow {{n_{(P)}}} \bot VTPT\overrightarrow {{n_{(Q)}}} = (1; – 3;2)}\\ {(P) \bot (Q) \Rightarrow VTPT\overrightarrow {{n_{(P)}}} \bot VTPT\overrightarrow {{n_{(R)}}} = (2;1; – 1)} \end{array}} \right\}}\)
Suy ra mặt phẳng (P) có VTPT là: \({\overrightarrow {{n_{(P)}}} = \left[ {\overrightarrow {{n_{(Q)}}} ,\overrightarrow {{n_{(R)}}} } \right] = (1;5;7)}.\)
Mặt khác (P) đi qua \({M_0}( – 2;3;1)\) nên có phương trình là:
\((P):(x + 2) + 5(y – 3) + 7(z – 1) = 0 \Leftrightarrow (P):z + 5y + 7z – 20 = 0.\)
d) Cặp VTCP mặt phẳng (P) là:
\(\left\{ \begin{array}{l} \overrightarrow {AB} = ( – 1; – 2;4)\\ \overrightarrow {AC} = ( – 2;1;3) \end{array} \right. \Rightarrow VTPT\overrightarrow {{n_{(P)}}} = \left[ {\overrightarrow {AB} ,\overrightarrow {AC} } \right] = ( – 10; – 5; – 5).\)
Mặt khác (P) đi qua A(2;0;-1) nên có phương trình là:
\((P): – 10(x – 2) – 5(y – 0) – 5(z + 1) = 0 \Leftrightarrow (P):2x + y + z – 3 = 0.\)
Xét vị trí tương đối của các cặp mặt phẳng cho bởi phương trình sau:
a) 2x-3y+4z-4=0 và 3x-y-x-1=0.
b) -x+y-z+4=0 và 2x-2y+2z-7=0.
c) 3x+3y-6z-12=0 và 4x+4y-8z-16=0.
a) Ta có: \(\frac{2}{3} \ne \frac{{ – 3}}{{ – 1}} \ne \frac{4}{1}\) vậy hai mặt phẳng cắt nhau.
b) Ta có: \(\frac{{ – 1}}{2} = \frac{1}{{ – 2}} = \frac{{ – 1}}{2} \ne \frac{4}{7}\) vậy hai mặt phẳng song song.
c) Ta có: \(\frac{3}{4} = \frac{3}{4} = \frac{{ – 6}}{{ – 8}} = \frac{{ – 12}}{{ – 16}}\) vậy hai mặt phẳng trùng nhau.
Cho hai mặt phẳng có phương trình lần lượt là: \(\left( {{m^2} – 5} \right)x – 2y + mz + m – 5 = 0\) và \(x + 2y – 3nz + 3 = 0.\)
Tìm m và n để hai mặt phẳng trùng nhau.
Hai mặt phẳng trùng nhau khi và chỉ khi:
\(\begin{array}{l} \frac{{{m^2} – 5}}{1} = \frac{{ – 2}}{2} = \frac{m}{{ – 3n}} = \frac{{m – 5}}{3}\\ \Leftrightarrow \left\{ \begin{array}{l} {m^2} – 5 = – 1\\ m = 3n\\ m – 5 = – 3 \end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l} m = \pm 2\\ n = \frac{m}{3}\\ m = 2 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} m = 2\\ n = \frac{2}{3} \end{array} \right. \end{array}\)
Vậy với m=2; \(n=\frac{2}{3}\) thì hai mặt phẳng trùng nhau.
Tìm khoảng cách từ các điểm \({M_0}\left( {1; – 1;2} \right);\,{M_1}\left( {3;4;1} \right);\,{M_2}\left( { – 1;4;3} \right)\) đến mặt phẳng x+2y+2z-10=0.
\(\begin{array}{l} d\left( {{M_0},(P)} \right) = \frac{{\left| {1 + 2.( – 1) + 2.2 – 10} \right|}}{{\sqrt {{1^2} + 2{}^2 + {2^2}} }} = \frac{7}{3}\\ d\left( {{M_1},(P)} \right) = \frac{{\left| {3 + 2.4 + 2.1 – 10} \right|}}{{\sqrt {{1^2} + 2{}^2 + {2^2}} }} = 1\\ d\left( {{M_2},(P)} \right) = \frac{{\left| { – 1 + 2.4 + 2.3 – 10} \right|}}{{\sqrt {{1^2} + 2{}^2 + {2^2}} }} = 1 \end{array}\)
Trên trục Oy tìm các điểm cách đều hai mặt phẳng \((P):x + y – z + 1 = 0\) và \((Q):z – y + z – 5 = 0.\)
Gọi \({M_0}\left( {{x_0};{y_0};{z_0}} \right) \in Oy.\)
Ta có:
\(\begin{array}{l} d({M_0},(P)) = d\left( {{M_0},(Q)} \right)\\ \Leftrightarrow \frac{{\left| {{y_0} + 1} \right|}}{{\sqrt {{1^2} + {1^2} + {{( – 1)}^2}} }} = \frac{{\left| { – {y_0} – 5} \right|}}{{\sqrt {{1^2} + {{\left( { – 1} \right)}^2} + {1^2}} }}\\ \Leftrightarrow \left| {{y_0} + 1} \right| = \left| { – {y_0} – 5} \right|\\ \Leftrightarrow \left[ \begin{array}{l} {y_0} + 1 = {y_0} + 5\,(VN)\\ {y_0} + 1 = – {y_0} – 5 \end{array} \right. \Leftrightarrow {y_0} = – 3 \end{array}\)
Vậy M(0;-3;0).
Tính góc tạo bởi mặt phẳng (P): 3x+y+4z+2017=0 và mặt phẳng (Q) chứa 3 điểm A(1;1;1); B(2;3;0); C(3;4;-1).
VTPT của (P) là: \(\overrightarrow {{n_P}} = \left( {3;1;4} \right).\)
(Q) chứa 3 điểm A(1;1;1); B(2;3;0); C(3;4;-1) nên VTPT của (Q) là:
\(\overrightarrow {{n_Q}} = \left[ {\overrightarrow {AB} ;\overrightarrow {AC} } \right] = (6; – 5; – 4).\)
Gọi \(\alpha\) là góc giữa hai mặt phẳng (P) và (Q) ta có:
\(\begin{array}{l} \cos \alpha = \frac{{\left| {\overrightarrow {{n_P}} .\overrightarrow {{n_Q}} } \right|}}{{\left| {\overrightarrow {{n_P}} } \right|\left| {\overrightarrow {{n_Q}} } \right|}} = \frac{{\left| {3.6 + 1.( – 5) + 4.( – 4)} \right|}}{{\sqrt {{3^2} + {1^2} + {4^2}} .\sqrt {{6^2} + {{( – 5)}^2} + {{( – 4)}^2}} }} = \frac{3}{{\sqrt {2002} }}\\ \Rightarrow \alpha \approx {86^0}9′. \end{array}\)