Bài 1: Số phức
Tìm số thực x, y thỏa mãn:
a) \(5x + y + 5xi = 2y – 1 + (x – y)i.\)
b) \(\left( { – x + 2y} \right)i + \left( {2x + 3y + 1} \right) = \left( {3x – 2y + 2} \right) + \left( {4x – y – 3} \right)i\)
a)
\(\begin{array}{l} 5x + y + 5xi = 2y – 1 + (x – y)i\\ \Leftrightarrow (3x + y) + 5xi = (2y – 1) + (x – y)i\\ \Leftrightarrow \left\{ \begin{array}{l} 3x + y = 2y – 1\\ 5x = x – y \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} x = – \frac{1}{7}.\\ y = \frac{4}{7}. \end{array} \right. \end{array}\)
b)
Ta có: \(\left( { – x + 2y} \right)i + \left( {2x + 3y + 1} \right) = \left( {3x – 2y + 2} \right) + \left( {4x – y – 3} \right)i\) khi:
\(\left\{ {\begin{array}{*{20}{c}} { – x + 2y = 4x – y – 3}\\ {2x + 3y + 1 = 3x – 2y + 2} \end{array}} \right.\)\(\Leftrightarrow \left\{ {\begin{array}{*{20}{c}} {5x – 3y = 3}\\ {x – 5y = – 1} \end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}} {x = \frac{9}{{11}}}\\ {y = \frac{4}{{11}}} \end{array}} \right.\)
Tìm số phức z biết:
a) \(\left| z \right| = 5\) và \(z = \overline z\).
b) \(\left| z \right| = 4\) và \(z = -\overline z.\)
c) \(\left| z \right| = 6\) và phần thực của số phức z bằng ba lần phần ảo của z.
Gọi số phức z cần tìm là \(z=x+yi\) suy ra: \(\overline z = x – yi\)
a) Ta có: \(z = \overline z\) nên \(x + yi = x – yi \Leftrightarrow 2yi = 0 \Leftrightarrow y = 0.\)
Mà \(\left| z \right| = \sqrt {{x^2} + {y^2}} = \sqrt {{x^2}} = 5 \Leftrightarrow x = \pm 5.\)
Vậy số phức cần tìm là z=5; z=-5.
b) Ta có: \(z = -\overline z\) nên \(x + yi = -x + yi \Leftrightarrow 2x = 0 \Leftrightarrow x= 0.\)
Mà \(\left| z \right| = \sqrt {{x^2} + {y^2}} = \sqrt {{y^2}} = 4 \Leftrightarrow y = \pm 4.\)
Vậy số phức z cần tìm là z=4i; z=-4i.
c) Phần thực của số phức z là x và phần ảo là y nên x=3y. Do đó ta có:
\(\begin{array}{l} \left\{ \begin{array}{l} x = 3y\\ \sqrt {{x^2} + {y^2}} = 6 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} x = 3y\\ {\left( {3y} \right)^2} + {y^2} = 36 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} x = 3y\\ {y^2} = \frac{{18}}{5} \end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l} y = \frac{{3\sqrt {10} }}{5};x = \frac{{9\sqrt {10} }}{5}\\ y = – \frac{{3\sqrt {10} }}{5};x = – \frac{{9\sqrt {10} }}{5} \end{array} \right. \end{array}\)
vậy ta có \(z = \frac{{9\sqrt {10} }}{5} + \frac{{3\sqrt {10} }}{5}i;\,\,z = – \frac{{9\sqrt {10} }}{5} – \frac{{3\sqrt {10} }}{5}i.\)