Bài 1 Nguyên hàm
Kí hiệu K là khoảng hoặc đoạn hoặc nửa khoảng của \(\mathbb{R}.\)
Định nghĩa:
Cho hàm số \(f(x)\) xác định trên K.
Hàm số \(F(x)\) được gọi là nguyên hàm của hàm số \(f(x)\) trên K nếu \(F'(x) = f(x)\) với mọi \(x \in K.\)
Định lý 1:
Nếu \(F(x)\) là một nguyên hàm của hàm số \(f(x)\) trên K thì với mỗi hằng số C, hàm số \(G(x) = F(x)+C\) cũng là một nguyên hàm của hàm số \(f(x)\) trên K.
Định lý 2:
Nếu \(F(x)\) là một nguyên hàm của hàm số \(f(x)\) trên K thì mọi nguyên hàm của \(f(x)\) trên K đều có dạng \(F(x)+C\) với \(C\) là một hằng số tùy ý.
Kí hiệu họ nguyên hàm của hàm số \(f(x)\) là \(\int f(x)dx.\)
Khi đó : \(\int f(x)dx=F(x)+C,C\in \mathbb{R}.\)
Định lí 3:
Mọi hàm số f(x) liên tục trên K đều có nguyên hàm trên K.
Định lí 1:
Cơ sở của phương pháp đổi biến số là định lý sau: Cho hàm số \(u = u(x)\) có đạo hàm và liên tục trên K và hàm số \(y = f({\rm{u)}}\) liên tục sao cho \(f[u(x)]\) xác định trên K. Khi đó nếu \(F\) là một nguyên hàm của \(f\), tức là \(\int {f(u)du = F(u) + C}\) thì \(\int {f[u(x){\rm{]dx = F[u(x)] + C}}}.\)
Hệ quả:
Với \(u = ax + b\,(a \ne 0),\) ta có:
\(\int {f(ax + b)dx} = \frac{1}{a}F(ax + b) + C\)
Định lí 2:
Nếu hai hàm số \(u=u(x)\) và \(v=v(x)\) có đạo hàm và liên tục trên K thì:
\(\int {u(x)v'(x)dx} = u(x)v(x) – \int {u'(x)v(x)dx}\)
Một số dạng thường gặp:
Cách giải: Đặt \(u = P(x)\,,\,dv = {e^{{\rm{ax}} + b}}dx\,\) hoặc \(dv = \sin (ax + b)dx,\,\,dv = \cos (ax + b)dx.\)
Cách giải: Đặt \(u = \ln ({\rm{ax}} + b)\,,\,dv = P(x)dx.\)
Áp dụng công thức nguyên hàm cơ bản, tính nguyên hàm sau:
a) \(I = \int {{x^8}}dx\)
b) \(I=\int \left ( x^2+2x \right )^2dx\)
c) \(I=\int \frac{1}{x^5}dx\)
d) \(I=\int\frac{1}{2x}dx\)
a) \(I = \int {{x^8}dx = \frac{1}{9}{x^9} + C}\)
b) \(I = \int {{{\left( {{x^2} + 2x} \right)}^2}dx = \int {\left( {{x^4} + 4{x^3} + 4{x^2}} \right)dx = \frac{1}{5}{x^5} + {x^4} + \frac{4}{3}{x^3} + C} }\)
c) \(I = \int {\frac{{dx}}{{{x^5}}} = \int {{x^{ – 5}}dx = \frac{1}{{ – 5 + 1}}{x^{ – 5 + 1}} + C = } } – \frac{1}{4}{x^{ – 4}} + C\)
d) \(I = \int {\frac{{dx}}{{2x}}} = \frac{1}{2}\int {\frac{{dx}}{x} = \frac{1}{2}\ln \left| x \right| + C}\)
Dùng phương pháp đổi biến số tính các nguyên hàm sau:
a) \(I = \int {\sqrt {{x^{2004}} + 1} .{x^{2003}}dx}\)
b) \(I = \int {{e^{{e^x} + x}}dx}\)
c) \(I = \int {{e^{2{x^2} + \ln {\rm{x}}}}dx}\)
d) \(I = \int {\frac{x}{{\sqrt[{10}]{{x + 1}}}}} dx\)
e) \(I=\int {\frac{{\sin x.{{\cos }^3}x}}{{1 + {{\cos }^2}x}}dx}\)
a) Đặt: \(t = {x^{2004}} + 1 \Rightarrow dt = 2004{x^{2003}}dx \Rightarrow {x^{2003}}dx = \frac{1}{{2004}}dt.\)
Từ đó ta được:
\(I = \frac{1}{{2004}}\int {\sqrt t dt} = \frac{1}{{2004}}\int {{t^{\frac{1}{2}}}dt} = \frac{1}{{2004}}.\frac{2}{3}{t^{\frac{3}{2}}} + C\)
\(= \frac{1}{{3006}}\sqrt {{t^3}} + C = \frac{1}{{3006}}\sqrt {{{\left( {{x^{2004}} + 1} \right)}^3}} + C\)
b) Ta có: \({e^{{e^x} + x}} = {e^{{e^x}}}.{e^x}\)
Đặt: \({e^x} = t \Rightarrow {e^x}dx = dt\)
Từ đó ta được:
\(I = \int {{e^t}dt} = \int {{e^t}dt} = {e^t} + C = {e^{{e^x}}} + C\)
c) Ta có: \(M = \int {{e^{2{x^2}}}.{e^{\ln x}}dx = } \int {{e^{2{x^2}}}.xdx}\)
Đặt: \(2{x^2} = t \Rightarrow 4xdx = dt \Rightarrow xdx = \frac{{dt}}{4}\)
Ta được: \(M = \int {{e^t}\frac{{dt}}{4} = \frac{1}{4}{e^t} + C = \frac{1}{4}{e^{2{x^2}}}} + C.\)
d) \(I = \int {\frac{x}{{\sqrt[{10}]{{x + 1}}}}} dx\)
Đặt: \(\sqrt[{10}]{{x + 1}} = t \Rightarrow x + 1 = {t^{10}} \Rightarrow dx = 10{t^9}dt\)
Ta được:
\(\begin{array}{l} N = \int {\frac{{{t^{10}} – 1}}{t}.10{t^9}dt} = 10\int {\left( {{t^{10}} – 1} \right){t^8}dt} \\ = 10\int {\left( {{t^{18}} – {t^8}} \right)dt} = \frac{{10}}{{19}}{t^{19}} – \frac{{10}}{9}{t^9} + C \end{array}\)
\(\, = \frac{{10}}{{19}}\sqrt[{10}]{{{{\left( {x + + 1} \right)}^{19}}}} – \frac{{10}}{9}\sqrt[{10}]{{{{\left( {x + 1} \right)}^9}}} + C\)
e) Ta có:\(I = \int {\frac{{\sin x.{{\cos }^3}x}}{{1 + {{\cos }^2}x}}dx = \frac{1}{2}\int {\frac{{2\sin x\cos x.{{\cos }^2}x}}{{1 + {{\cos }^2}x}}} } dx = \frac{1}{2}\int {\frac{{{{\cos }^2}x}}{{1 + {{\cos }^2}x}}.\sin 2xdx}\)
Đặt: \(1 + {\cos ^2}x = t \Rightarrow \sin 2xdx = – dt\)
\(\Rightarrow S = – \frac{1}{2}\int {\frac{{t – 1}}{t}dt} = – \frac{1}{2}\int {dt + \frac{1}{2}\int {\frac{{dt}}{t}} = – \frac{1}{2}t + \frac{1}{2}\ln \left| t \right| + C}\)
Dùng phương pháp nguyên hàm từng phần tính các nguyên hàm sau:
a) \(I = \int {x{\rm{sin2}}xdx}\)
b) \(I = \int {{x^2}{e^{2x}}dx}\)
c) \(I = \int {\left( {2{x^2} + x + 1} \right){e^x}dx}\)
d) \(I = \int {x{{\cos }^2}2xdx}\)
a) Đặt \(\left\{ \begin{array}{l} u = x\\ dv = \sin 2xdx \end{array} \right. \Rightarrow \left\{ \begin{array}{l} du = dx\\ v = – \frac{1}{2}\cos 2x \end{array} \right.\)
\(\Rightarrow I = – \frac{1}{2}x\cos 2x + \frac{1}{2}\int {\cos 2xdx} = – \frac{1}{2}x\cos 2x + \frac{1}{4}\sin 2x + C\)
b) Đặt: \(\left\{ \begin{array}{l} u = {x^2}\\ dv = {e^{2x}}dx \end{array} \right. \Rightarrow \left\{ \begin{array}{l} du = 2xdx\\ v = \frac{1}{2}{e^{2x}} \end{array} \right.\)\(\Rightarrow I = \frac{1}{2}{x^2}{e^{2x}} – \int {x{e^{2x}}dx} = \frac{1}{2}{x^2}{e^{2x}} – {I_1}\)
Tính \({I_1} = \int {x{e^{2x}}dx}\)
Đặt: \(\left\{ \begin{array}{l} u = x\\ dv = {e^{2x}}dx \end{array} \right. \Rightarrow \left\{ \begin{array}{l} du = dx\\ v = \frac{1}{2}{e^{2x}} \end{array} \right.\)
\(\Rightarrow {I_1} = \frac{1}{2}x{e^{2x}} – \frac{1}{2}\int {{e^{2x}}dx} = \frac{1}{2}x{e^{2x}} – \frac{1}{4}{e^{2x}} + C\)
Vậy: \(I = \frac{1}{2}{x^2}{e^{2x}} – \frac{1}{2}x{e^{2x}} + \frac{1}{4}{e^{2x}} + C = \frac{{\left( {2{x^2} – 2x + 1} \right){e^{2x}}}}{4} + C\)
c) Đặt: \(\left\{ \begin{array}{l} u = 2{x^2} + x + 1\\ dv = {e^x}dx \end{array} \right. \Rightarrow \left\{ \begin{array}{l} du = \left( {4x + 1} \right)dx\\ v = {e^x} \end{array} \right.\)
\(\Rightarrow I = \left( {2{x^2} + x + 1} \right){e^x} – \int {\left( {4x + 1} \right){e^x}dx}\)
Tính: \({I_1} = \int {\left( {4x + 1} \right){e^x}dx}\)
Đặt: \(\left\{ \begin{array}{l} u = 4x + 1\\ dv = {e^x}dx \end{array} \right. \Rightarrow \left\{ \begin{array}{l} du = 4dx\\ v = {e^x} \end{array} \right.\)
\(\Rightarrow {I_1} = \left( {4x + 1} \right){e^x} – 4\int {{e^x}dx} = \left( {4x + 1} \right){e^x} – 4{e^x} + C = \left( {4x – 3} \right){e^x} + C\)
\(\Rightarrow I = \left( {2{x^2} + x + 1} \right){e^x} – \left( {4x – 3} \right){e^x} + C = \left( {2{x^2} – 3x + 4} \right){e^x} + C\)
d)
\(\begin{array}{l} I = \int {x{{\cos }^2}2xdx} = \int {x.\frac{{1 + \cos 4x}}{2}} dx\\ = \frac{1}{2}\int {xdx} + \int {\frac{1}{2}x\cos 4xdx} = \frac{1}{4}{x^2} + {I_1} \end{array}\)
Tính \({I_1} = \int {\frac{1}{2}x\cos 4xdx}\)
Đặt: \(\left\{ \begin{array}{l} u = \frac{1}{2}x\\ dv = \cos 4xdx \end{array} \right. \Rightarrow \left\{ \begin{array}{l} du = \frac{1}{2}dx\\ v = \frac{1}{4}\sin 4x \end{array} \right.\)
\(\Rightarrow {I_1} = \frac{1}{8}x\sin 4x – \frac{1}{8}\int {\sin 4xdx} = \frac{1}{8}x\sin 4x + \frac{1}{{32}}\cos 4x + C\)
Vậy: \(I = \frac{1}{4}{x^2} + \frac{1}{8}x\sin 4x + \frac{1}{{32}}\cos 4x + C\)