Chương 1: Khảo Sát Và Vẽ Đồ Thị Của Hàm Số
Chương 2 Hàm số lũy thừa, Hàm số mũ và Hàm số Lôgarit
Chương 3: Nguyên Hàm – Tích Phân Và Ứng Dụng
Chương 4: Số phức
Chương 1: Khối Đa Diện
Chương 2: Mặt Nón, Mặt Trụ, Mặt Cầu
Chương 3 Phương pháp tọa độ trong không gian

Giải bài tập Bài 1 Hệ tọa độ trong không gian

toan 12
Giải bài tập Bài 1 Hệ tọa độ trong không gian

Bài 1. Cho ba vectơ \(\overrightarrow{a}\)(2; -5; 3), \(\overrightarrow{b}\)(0; 2; -1), \(\overrightarrow{c}\)(1; 7; 2).

a) Tính tọa độ của vectơ \(\overrightarrow{d}=4.\overrightarrow{a}-\frac{1}{3}\overrightarrow{b}+3\overrightarrow{c}\).

b) Tính tọa độ của vectơ \(\overrightarrow{e}=\overrightarrow{a}-4\overrightarrow{b}-2\overrightarrow{c}\).

Giải:

a) \(4\overrightarrow{a}=( 8; -20; 12)\);  \(\frac{1}{3}\overrightarrow{b}= (0;\frac{2}{3}; \frac{-1}{3})\) ;  \(2\overrightarrow{c} = ( 3; 21; 6)\).

Vậy \(\overrightarrow{d}=(11; \frac{1}{3};\frac{55}{3})\).

b) Tương tự \(\overrightarrow{e}=( 0; -27; 3)\).

 

===============

Bài 2. Cho ba điểm \(A = (1; -1; 1), B = (0; 1; 2), C = (1; 0; 1)\).

Tìm tọa độ trọng tâm \(G\) của tam giác \(ABC\).

Giải:

\(G\) là trọng tâm của tam giác ABC thì \(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow{0}\)     (*)

Giả sử \(G(x; y; z)\) thì   \(\overrightarrow{GA} = (1 – x; -1 – y; 1 – z)\);

\(\overrightarrow{GB} = (-x; 1 – y; 2 – z)\);

\(\overrightarrow{GC} = (1 – x; -y; 1 – z)\);

=> \(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC} = (2 – 3x; -3y; 4 – 3z)\)

Do hệ thức (*), ta có :

\(2 – 3x = 0 \Rightarrow x = \frac{2}{3}\) ;

\(-3y = 0 \Rightarrow y = 0\);

\( 4 – 3z = 0 \Rightarrow z = \frac{4}{3}\).

Vậy \(G(\frac{2}{3};0;\frac{4}{3})\).

Nhận xét : Trọng tâm \(G\) của tam giác \(ABC\) bằng trung bình cộng các tọa độ tương ứng của \(3\) đỉnh của tam giác.

============

Bài 3. Cho hình hộp \(ABCD.A’B’C’D’\) biết \(A = (1; 0; 1), B = (2; 1; 2), D = (1; -1; 1)\),

\(C’ (4; 5; -5)\). Tính tọa độ các đỉnh còn lại của hình hộp.

Giải:

Giải bài tập Bài 1 Hệ tọa độ trong không gian

Ta có:

\(\eqalign{
& \overrightarrow {AB} = \left( {1;1;1} \right) \cr
& \overrightarrow {A{\rm{D}}} = \left( {0; – 1;0} \right) \cr
& \overrightarrow {BC} = \overrightarrow {A{\rm{D}}} \Leftrightarrow \left\{ \matrix{
{x_C} – 2 = 0 \hfill \cr
{y_C} – 1 = – 1 \hfill \cr
{z_C} – 2 = 0 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
{x_C} = 2 \hfill \cr
{y_C} = 0 \hfill \cr
{z_C} = 2 \hfill \cr} \right. \cr} \)

Vậy \(C = (2; 0; 2)\)

Suy ra \(\overrightarrow {CC’}  = \left( {2;5; – 7} \right)\)

Từ \(\overrightarrow {AA}  = \overrightarrow {BB}  = \overrightarrow {DD}  = \overrightarrow {CC}  = \left( {2;5; – 7} \right)\)

Suy ra \(\left\{ \matrix{
{x_A} – 1 = 2 \hfill \cr
{y_A} – 0 = 5 \hfill \cr
{z_A} – 1 = – 7 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
{x_A} = 3 \hfill \cr
{y_A} = 5 \hfill \cr
{z_A} = – 6 \hfill \cr} \right.\)

Vậy \(A’ (3; 5; -6)\)

Tương tự \(B’ = (4; 6; -5); D’ = (3; 4; -6)\).

==============

Bài 4. Tính:

a) \(\overrightarrow{a}.\overrightarrow{b}\) với \(\overrightarrow{a}(3; 0; -6)\), \(\overrightarrow{b}(2; -4; 0)\).

b) \(\overrightarrow{c}.\overrightarrow{d}\) với \(\overrightarrow{c}(1; -5; 2)\), \(\overrightarrow{d}(4; 3; -5)\).

Giải:

a)  \(\overrightarrow{a}.\overrightarrow{b} = 3.2 + 0.(-4) +(-6).0 = 6\).

b)  \(\overrightarrow{c}.\overrightarrow{d} = 1.4 + (-5).3 + 2.(-5) = -21\).

============

Bài 5. Tìm tâm và bán kính của các mặt cầu có phương trình sau đây:

a) \({x^2} + {\rm{ }}{y^{2}} + {\rm{ }}{z^2}-{\rm{ }}8x{\rm{ }} – {\rm{ }}2y{\rm{ }} + {\rm{ }}1{\rm{ }} = {\rm{ }}0\) ;

b) \(3{x^2} + {\rm{ }}3{y^2} + {\rm{ }}3{z^2}-{\rm{ }}6x{\rm{ }} + {\rm{ }}8y{\rm{ }} + {\rm{ }}15z{\rm{ }}-{\rm{ }}3{\rm{ }} = {\rm{ }}0\).

Giải:

a) Ta có phương trình : \({x^2} + {\rm{ }}{y^{2}} + {\rm{ }}{z^2}-{\rm{ }}8x{\rm{ }} – {\rm{ }}2y{\rm{ }} + {\rm{ }}1{\rm{ }} = {\rm{ }}0\)

\( \Leftrightarrow {\rm{ }}{\left( {x{\rm{ }}-{\rm{ }}4} \right)^2} + {\rm{ }}{\left( {y{\rm{ }}-{\rm{ }}1} \right)^2} + {\rm{ }}{z^2} = {\rm{ }}{4^2}\)

Đây là mặt cầu tâm \(I(4; 1; 0)\) và có bán kính \(r = 4\).

b) Ta có phương trình:

\(3{x^2} + {\rm{ }}3{y^2} + {\rm{ }}3{z^2}-{\rm{ }}6x{\rm{ }} + {\rm{ }}8y{\rm{ }} + {\rm{ }}15z{\rm{ }}-{\rm{ }}3{\rm{ }} = {\rm{ }}0\)

\(\Leftrightarrow {x^2} + {y^2} + {z^2}{\rm{  – }}2x + {8 \over 3}y + 5z{\rm{  – }}1 = 0\)

\(⇔ (x-1)^{2}+(y+\frac{4}{3})^{2}+(z+\frac{5}{2})^{2}= (\frac{19}{6})^{2}\).

Đây là mặt cầu tâm \(J(1; -\frac{4}{3};-\frac{5}{2})\) và có bán kính là \(R = \frac{19}{6}\).

============

Bài 6. Lập phương trình mặt cầu trong hai trường hợp sau đây:

a) Có đường kính \(AB\) với \(A(4 ; -3 ; 7),  B(2 ; 1 ; 3)\)

b) Đi qua điểm \(A = (5; -2; 1)\) và có tâm \(C(3; -3; 1)\)

Giải:

a) Gọi \(I\) là trung điểm của \(AB\), thì mặt cầu có đường kính \(AB\), có tâm \(I\) và bán kính

\(r =\frac{1}{2}AB=IA\).

Ta có : \(I (3; -1; 5)\) và \(r^2 = IA^2 = 9\).

Do vậy phương trình mặt cầu đường kính \(AB\) có dạng:

\({\left( {x{\rm{ }} – {\rm{ }}3} \right)^{2}} + {\rm{ }}{\left( {y{\rm{ }} + 1} \right)^2} + {\rm{ }}{\left( {z{\rm{ }}-{\rm{ }}5} \right)^2} = {\rm{ }}9\)

b) Mặt cầu cần tìm có tâm \(C(3; -3; 1)\) và có bán kính \(r = CA = \sqrt{4+1+0}=\sqrt{5}\)

Do đó phương trình mặt cầu có dạng:

\({\left( {x{\rm{ }} – {\rm{ }}3} \right)^2} + {\rm{ }}{\left( {y{\rm{ }} + {\rm{ }}3} \right)^{2}} + {\rm{ }}{\left( {z{\rm{ }}-{\rm{ }}1} \right)^2} = {\rm{ }}5\).